skip to content

Cambridge Academy of Therapeutic Sciences

 

Researchers have developed a three-dimensional ‘organ on a chip’ which enables real-time continuous monitoring of cells, and could be used to develop new treatments for disease while reducing the number of animals used in research. 

Two-dimensional cell models have served the scientific community well, but we now need to move to three-dimensional cell models in order to develop the next generation of therapies

Róisín Owens

 

The device, which incorporates cells inside a 3D transistor made from a soft sponge-like material inspired by native tissue structure, gives scientists the ability to study cells and tissues in new ways. By enabling cells to grow in three dimensions, the device more accurately mimics the way that cells grow in the body.

The researchers, led by the University of Cambridge, say their device could be modified to generate multiple types of organs - a liver on a chip or a heart on a chip, for example – ultimately leading to a body on a chip which would simulate how various treatments affect the body as whole. Their results are reported in the journal Science Advances.

Now, 3D cell and tissue cultures are an emerging field of biomedical research, enabling scientists to study the physiology of human organs and tissues in ways that have not been possible before. However, while these 3D cultures can be generated, technology that accurately assesses their functionality in real time has not been well-developed.

Other organ on a chip devices need to be completely taken apart in order to monitor the function of the cells, but since the Cambridge-led design allows for real-time continuous monitoring, it is possible to carry out longer-term experiments on the effects of various diseases and potential treatments.

“With this system, we can monitor the growth of the tissue, and its health in response to external drugs or toxins,” said Pitsalidis. “Apart from toxicology testing, we can also induce a particular disease in the tissue, and study the key mechanisms involved in that disease or discover the right treatments.”

The researchers plan to use their device to develop a ‘gut on a chip’ and attach it to a ‘brain on a chip’ in order to study the relationship between the gut microbiome and brain function as part of the IMBIBE project, funded by the European Research Council. The researchers have filed a patent for the device in France.

The text in this work is licensed under a Creative Commons Attribution 4.0 International License